Enumeration of Microorganisms Capable of Mediating Anaerobic Oxidation of Uranium in Subsurface Sediments

Rebecca V. Kiat¹, Jason P. Nolan², Olivia M. Healy¹, Donald Pan¹, Soyoung Jung¹, and Karrie A. Weber¹,²

¹ School of Biological Sciences, University of Nebraska, Lincoln, NE USA
² Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, NE USA

Abstract

Naturally occurring uranium (U) minerals are subject to oxidation via oxidants e.g. nitrate, thus forming soluble U(VI) which is a recognized contaminant in public water supplies throughout the Great Plains. In order to determine the potential impact of microbially-mediated U dissolution, this study focused on evaluating the abundance of anaerobic microorganisms within subsurface sediment cores capable of mediating five major metabolisms which impact uranium oxidation: heterotrophic nitrate reduction, nitrate-dependent U(VI) oxidation, iron (Fe(III)) reduction, and nitrate-dependent Fe(II) oxidation. The cores used were obtained from two sites in Hastings, NE (5A and 5D) where subsurface sediment and groundwater (15-180 R) were collected. At site A, nitrate concentrations in groundwater remained constant with increasing depth and increasing U(VI) while at site 5D, both concentrations increased with depth. Additionally, Most Probable Number enumeration at both sites showed that nitrate-dependent U(VI) oxidizing microorganisms had the highest abundance of all metabolisms tested. Oxidation of U(VI) by microorganisms could contribute to more U mobilization in groundwater, increasing risk to human health when consumed.

Background

Uranium (U) is a toxic radioactive mineral that occurs naturally within some types of rocks and soils throughout the United States, including the Great Plains. In Nebraska, U occurs predominantly in its reduced form, U(IV), which is generally insoluble. However, reduced U is subject to oxidation via oxidants such as oxygen and nitrate, thus forming a main end product of U(VI) which is soluble and thus mobile. This soluble U is recognized contaminant found in groundwater supplies, a common source of drinking water for public consumption and use.

Anthropogenic activity can affect the mobilization of U. For example, the application of fertilizer onto agricultural fields is a known source of nitrate contamination within soil and groundwater. This increased nitrate contamination can act as an oxidant, oxidizing the reduced U(IV) to form soluble U(VI) which can easily be carried by groundwater. This can occur abiotically, but it can also be micrabolically mediated. Additionally, microorganisms can further mediate U dissolution by oxidizing Fe(II) in soil into Fe(III) oxides. This is another potential pathway as Fe(III) oxides are known to oxidize U(VI). Both these reactions can contribute to further mobilization of U into water, affecting both urban and rural communities, as consuming elevated levels of U may be associated with human health concerns such as kidney damage.

Method

Collection of sediment core images were taken at one of the two sites in Hastings, NE. Clockwise left to right: Set-up of drilling rig to collect core, makeshift laboratory to process samples in situ, two core segments.

Most Probable Number (MPN) Enumeration

Figure 2. The MPN method is done in a serial dilution as depicted. For each of the five major metabolisms tested in this experiment, a nine-fold dilution series was prepared in replicates of three. Each set included controls.

Results

Figure 3A & 3B. The geochemical data from both sites at 5A and 5D in Hastings, NE. Nitrate and U(VI) levels were obtained from groundwater, whereas the ratio for U(VI)/Total U and Sediment U were obtained from sediment.

At site 5A, groundwater nitrate concentrations in remained constant with increasing depth and decreasing soluble U(VI), while in site 5D both nitrate and U(VI) increased with depth.

Conclusion

At both sites, Most Probable Number (MPN) enumeration showed the highest abundance for nitrate-dependent U(VI) oxidizing microorganisms, suggesting significant abiotic mediation of U(VI) oxidation by indigenous microorganisms, in situ. In addition, there was an abundance of nitrate-dependant Fe(II) oxidizing microorganisms, which can further contribute towards the conversion of U(VI) into mobile U(VII). These microbially mediated processes could have a significant impact on the oxidation and subsequent mobility of naturally occurring uranium in subsurface environments. The increased mobilization of U(VII) could contribute to increased U contamination groundwater which is a common source for public use.

Acknowledgements

City of Hastings Utilities
University of Nebraska-Lincoln Research Council (and everyone at the Weber Lab!)

*Images used in Figure 1 & 4 credited to Jason Nolan

Objective

To obtain an accurate quantitative measure of the abundance of microorganisms in sediment capable of contributing to U(VI) oxidation and subsequent mobility.